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ABSTRACT

This report provides a brief summary of the principal results obtained in a research
program on the mechanics of progressive cracking in ceramic matrix composites and
laminates. The report concentrates on (i) progressive transverse matrix cracking in cross-ply
laminates, (i) the effect of transverse matrix cracks on the axial response of unidirectional
ceramic matrix composites, (iii) thermal conductivities of hot pressed SiC/BN composites, (iv)
microcracking in polycrystalline ceramics, and (v) the effect of matrix cracking and fiber-

matrix interfacial debonding on the response of unidirectional ceramic matrix composites.




L INTRODUCTION

This research project addressed several basic problems in the damage mechanics of

brittle composite materials. Many new results were obtained in the course of this work. The

principal results may be summarized as follows:

1.

The formulation of a complete model to predict both first ply failure and the
subsequent progressive transverse cracking in cross-ply composite laminates.
The accuracy of the predictions for AS-3501-06 and T300/934 systems is
particularly gratifying. Both theoretically and experimentally it is clear that
damage development in such brittle systems can be retarded by keeping the ply
thickness to a minimum.

The formulation of a refined shear lag model for steady state matrix cracking in
unidirectional ceramjc matrix compc;sites. Amongst other things, the analysis
shows the éensitivity of the model to the mechanics of the interfacial debond
regime.

The formulation of both the self consistent model and the differential scheme
for the conductivity of three phase composites. In the case of some hot pressed
SiC/BN composites containing voids, the theoretical predictions were compared
with experimental data. For the conductivity parallel to the hot-pressing
direction agreement was good. However for the conductivity perpendicular to
the hot-pressing direction agreemént was not good.

The investigation of the two-dimensional hexagonal array model for
polycrystalline aggregates. It turns out that one can obtain an analytic solution
of the problem for arbitrary grain orientation distributions. One significant
conclusion to emerge is that accurate determination of interfacial stresses
demands consideration of at least 200 contiguous grains. In addition a model
was forrnulated to describe progressive grain boundary microcracking. The

model has the advantages of stmplicity, ease of calculation of process zone




microcrack shielding, allows for anisotropy of microcracking and compares
favorably with models proposed by others.

5. The proper formulation and solution of stress analysis problems associated
with interfacial debonding in unidirectional ceramic matrix composites. We
take the opportunity to correct errors which are prevalent in the literature--
even in the simplest case of an arc crack in a homogeneous material. The
solution to the full problem is obtained from two coupled singular integral
equations and thus provides a proper basis for all subsequent work on fiber-
matrix interfacial debonding.

These principal findings, together with other related results, are described in the sequel.

2 SIGNIFICANT ACHIEVEMENTS
2.1

In a series of reports and papers which were produced under an earlier AFOSR grant (84-
0366), Laws and Dvorak [1, 2, 3] gave extensive results on the incidence of the first transverse
crack in cross-ply laminates and the subsequent damage development under increasing load.
A feature of the Laws-Dvorak analysis was that the shear lag parameter was chosen to give the
correct value of the stress for first ply failure. This was entirely due to the fact that the stress
intensity reduction factors required by the Laws-Dvorak model (1, 2] were then unknown.

In the course of the present work this deficiency has been remedied by Laws and Wang
[4]. By making use of the analysis contained in Wang's Ph.D. dissertation [5], Laws and Wang [4]
have gtven a completely deductive model for the prediction of progressive transverse cracking
in cross-ply composite laminates. It is of interest to observe the comparison between the Laws-
Wang model, those of other authors and the experimental data. Some results for first ply
failure are shown in Figs. 1, 2 and 3. Also included in Figs. 1, 2 and 3 are results obtained from
the theoretical models of Bailey et al 6], Flaggs (7], Nuismer and Tan [8] and Hahn, Han and
Croman (9]. Whilst the author has reservations on the status of the models of these various

authors [6, 7, 8, 9] it is clear from Figs. 1, 2 and 3 that no model has a decistve advantage in the




prediction of first ply failure--at least as far as is shown by the data reported in these figures.

The situation is entirely different when we discuss progressive transverse cracking.
When we wish to predict crack density as a function of applied load it is clear that the models
given in |6, 7, 8, 9] are not successful. Indeed the only acceptable modeis known to the author,
are the Laws-Wang improvement of the Laws-Dvorak model together with the model of Wang
and Crossman [11]. It is noteworthy that predictions of both models are almost identical, as
shown in Figs. 4 and 5, wherein the models are compared with data by Wang [11] for AS-3501-
06 and T300/934 systems.

Finally we note that a significant implication of our results is that the amount of

1 n be redu ki h hickn um.

The work here has concentrated on an extension of the Laws-Dvorak shear lag [2]

model to the steady state cracking regime discussed by Budiansky, Hutchinson and Evans [12].
We also note that the steady state cracking model has been extensively studies by others--most
notably by Dharani, Chai and Pagano [13] and by McCartney [14]. In this context it is difficult
to compare the various theoretical models and to compare with such data as is available. We
are therefore content to describe some of the significant results which emerge from the model
developed by the author [15] and to compare our results with those of Budiansky, f-lutchinson
and Evans [12].

First consider unbonded, frictionally constrained fibers. Then the non-dimensional
critical cracking stress obtained from our model is compared with the BHE model in Figs. 6
and 7. Aside from the slight overshoot in Fig. 6, the two models are comparable. But
differences emerge when we consider the critical matrix stress for initially bonded, debonding
fibers. In this case our model is distinctly different from the BHE model. At the expense of over-
shnpliﬂoagon it 1s appropriate to say that our model [15] requires knowledge of the interfacial

shear strength. Thus consider initially bonded, debonding fibers which are then constrained




by friction. The critical stress for various ratios of G4Gp, (debonding toughness/matrix
toughness) and 14/t (interfacial shear strength/friction stress) are shown in Figs. 8, 9 and 10.
In order to examine the effect of residual stress on the critical stress, Figs. 11, 12 and 13 show
the different critical stresses when the fiber-matrix interface in the debonded zone. remains in
contact with friction or separates. We note that frictional contact produces a slgmﬂcant

increase in the critical matrix cracking stress as is only to be expected.

The most significant results obtained in this part of our work has been our success in
formulating the s.c.m. and d. s. models together with some success in predicting the
experimental results of Ruh, Bentsen and Hasselman [16] parallel to the direction of hot
pressing. However, as might be expected, the theoretical results differ rather widely from the
experimental data for the direction perpendicular to the hot-pressing direction. The resulfs.
shown in Figs. 14-17 provide confirmation of the above statements.

Of course, a major problem posed by any examination of the data of Ruh, Bentsen and
Hasselman [16] is that they pertain to 3-phase composites. Indeed, as far as the author is
aware, the work reported here is the first attempt to correlate 3-phase theoretical models with
experiment.

It is abundantly clear that complete experimental data is essential for the successful
application of any theoretical model.

24  Microcracking in polvcrystailine ceramics.

In the first instance we mention the completion of some earlier work (partly funded by
ALCOA) on the effect of residual stress in polycrystalline ceramics. The model proposed by
Laws and Lee [17] is an extension of the Evans [18] two-dimensional hexagonal array model. It
is assumed that each grain is elastically isotropic but thermally anisotropic. The orientation
of the various grains in the array is arbitrary.

It is possible [17] to give an exact solution to this problem. Amongst other things, the




solution extends a result of Evans [18] to show that the stress singularity at triple points is
always logarithmic. In addition, we were able to show that if accurate information on the
residual stress at a given interface is required, nmmmmm
surrounding grains. This result is in marked contrast to an earlier assertion by Evans and Fu
[19, 10, 21}.

A result of significant practical interest is the grain size for spontaneous
microcracking during cooldown. As described by Laws and Lee [17] the model compares
favorably with the model of Hutchinson and Tvergaard [12] and the experimental data of Rice
and Pohanka [23].

A further area of concern is the progressive microcracking of the polycrystalline
aggregate under continued mechanical loading. At this juncture it is perhaps important to
| emphasize that the development of models for progressive microcracking of polycrystalline
cerarnics play an important role in our work on ceramic matrix composites.

The data shows that such systems are essentially elastic in the sense that residual
strains in simple tension tests are often negligible. Thus one is led to formulate models for
microcracking solids but which have a macroscopic energy function. It is noteworthy that
Hutchinson [24] and Charalambides and McMeeking [25] have emphasized that existence of a
microscopic energy density does not imply existence of a macroscopic energy density in a
microcracking solid. In fact, as is discussed by Laws [26] severe restrictions must be placed on
the microcrack nucleation function in order that the rhicrocracking polycrystalline aggregate
can be regarded as macroscopically hyperelastic. These restrictions give rise to a nucleation
function which closely approximates the nucleation function proposed by Charalambides and
McMeeking [25]. In effect, the different nucleation functions are demanded by the assumed
model for stiffness loss (e.g. self-consistent model, linear extrapolation, differential scheme
etc). The technique has considerable advantages over earlier work in that it applies with
comparative ease to anisotropic distributions of microcracks.

" An issue of much current interest relates to the effect of shielding due to microcracking

in the process zone of a stationary macroscopic crack. This problem has been discussed by




Hutchinson [24], Charalambides and McMeeking (25] Ortiz [27] and others. An assessment and
comparison of the respective models is discussed by the present writer in [26]. For the present
it suffices to say that, within the range of common applicability, the various models are in
reasonable agreement. The advantage which is claimed for the writer’'s model [26], is that the
extent of microcrack shielding is obtained with relatllvel.y little effort. In addltlor-l the model

appears to have potential for application to more complicated systems.

It is appropriate to repeat in this final report many stimulating conversations with

Drs. Ted Nicholas and Nick Pagano and members of their groups at WRDC/MLLN. In addition
it is important to record the excellent work by Zawada and Butkus [28].

As stated in earlier reports, an extensive round table discussion was held at
WRDC/MLLN at which it was concluded that some exact solutions relevant to fiber-matrix
debonding were highly desirable. Such solutions are extremely important for many reasons.

Thus a significant effort has been expended in solving, and applying, the solutions of a
variety of fiber-matrix interfacial crack problems. For simplicity I concentrate on the two-
dimensional problem associated with a sjngle SiC fiber in an LAS matrix when there is an
applied simple tension at infinity and thege is a single debond crack at the interface. But
before I describe the SiC fiber-LAS matrix, let me briefly discuss the associated problem
wherein fiber and matrix are of the same material. The solution of this problem is given by
Mushkelishvili [29]. This solution was used by Sih, Paris and Erdogan [30] to calculate the
stress intensity factors at the crack tips. Unfortunately, as noted by Savin [31] the expression
for the S.I.F. given in [30] is wrong. However, a significant feature of the Mushkelishvili
solution, which appears to have escaped the attention of all previous workers , except Toya [32].
is that it implies crack closure for certain orientations of the applied load, see Fig. 18. This
unhappy situation has been remedied by Chao and Laws {33) who gave an exact solution of the
problem for partially closed cracks. In Fig. 19 we present a graphic to show the extent of crack

7




closure under changing orientation of applied load. Obviously it is inappropriate to give
comprehensive details of the techniques or results in this report. It is, however, instructive to
show the comparison between the stress intensity factors given by Rooke and Cartwright [34]
(who use the Savin [31] result) and the results obtained by Chao and Laws [33]. Despite the fact
that the so-called handbook solution is not correct whenever crack closure occurs, it is obvious
from Figs. 20-23 that the handbook result is remarkable close to the correct result. Further, in

Fig. 24 we show the fransverse stiffness of a solid containing a population of identical arc-

cracks, with crack densities € =0.05 and € =0.01. It is again clear that the handbook
solution is extremely accurate even when crack closure occurs. Thus we have the significant
(but anticlimactic) result that the Muskhelishvill selution 291 is entirely sufficient for most
practical purposes.

Turning now to the genuine interfacial crack problem, it is well known that this
involves an enormous increase in complexity [32, 35, 36, 37, 38, 39]. In addition recent work by
Rice [40] and Hutchinson [41] have thrown considerable light on the problem of a crack at the
interface of two half spaces.

Of course, it is clear that in the case of an interfacial (arc) crack between an SiC fiber
and an LAS matrix, we can get crack closure by twg mechanisms: first by the so-called
overlapping surfaces phenomenon and second because of load orientation. Nevertheless. it
may be shown that the pmblm can be reduced to the solution of two coupled singular integral
equations which must be solved numerically. It turns out that the shape of the interfacial
crack with partial contact is sunilar to that shown in Fig. 19 for the arc crack--but detailed
exposition is inappropriate here. It suffices to say that for arbitrary choice of fiber and matrix
one can calculate contact lengths, stress intensity factors, energy release rates, loss of
stiffness, etc., etc. The full details are available in the paper by Chao and Laws[42). By way of
illustration the actual contact lengths are shown in Figs. 24, 25--note the significant difference

in magnitude of the contact length §; (at the "open"” end) compared with §, (at the "closed” end) .
Also, typical stress intensity factors are shown in Figs. 26 and 27. Perhaps the easiest graphs

to interpret are those showing loss of transverse stiffness (Et) as functions of material

8




parameters and crack and load geometry, shown in Figs. 28, 29 and 30. In this context, it is not
possible to assert that one can use the "classical" overlapping solution with impunity.

These and other issues are discussed, at length, by Chao and Laws [42, 43]. It is also
worth recording here that significant progress has been made by the author in analyzing the
nature of the near-tip zones of the interfacial cracks. 'I'hc analysis here shows that there is a
definite "boundary layer” effect--similar to that obtained by Dundurs and Gautesen [44].

Further, the analysis gives additional weight to Hutchinson's [41] proposal to set B=0and
thus avoid the terms which give rise to overlapping surfaces at the crack tips. The currént,
albeit tentative, conclusion from our exact analysis is that Hutchinson's {41] proposal should

be entirely sufficient for practical purposes.
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_ Fig. 15 Thermal conductivity of SIC/BN composites (containing voids of aspect ratio §
. parallel to the hot-pressing direction by the differential scheme.
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Fig. 26 Interfacial crack contact length (82) at B for various values of the Dundurs parameter

B*, and load orientation, g, when the first Dundurs parameter 1s 0* = 0.5 and ¢ = 60°,
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Fig. 27 Mode Il S.LF. at A for various values of the Dundurs parameter, B*. and 1oad
orientation, ¢y when the first Dundurs parameter a
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Fig. 30 Reduction in Young's modulus due to interfacial microcracking for various values of the

Dundurs parameter, B*, and load orientation, . when the first Dundurs parameter

a* =0.5, ¢ =45° and the volume fraction of fibers = 0.1.
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Dundurs parameter, §*, and load orientation, . when the firat Dundurs parameter

Fig. 31 Reduction In Young's modulus due to interfacial microcracking for various values of the
a* = 0.5 and ¢ = 60° and the volume fraction of fibers = 0.1.
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Progressive Transverse Cracking In
Composite Laminates
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Department of Mechanical Engineering
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1. INTRODUCTION

THE DEVELOPMENT OF a satisfactory theory for cross-ply laminates which
havebeendamgedbytransversemau'ixcxackingundcrmomtonic loading
has attracted a substantial number of investigators. The formulation of a shear lag
modelappearstohavebeenﬁrstpmposed in a series of papers by Bailey and his
co-workers {1.2,3,4,5.6]. This work, in turn, relies on some swudies of unidirec-
tional composites by Aveston and Kelly [6]. Subsequent contributions to the
theory have geen given by Wang (7], Highsmith and Reifsnider (8], Flaggs and
Kural [9], Nuismer and Tan {10], Manders, Chou, Jones and Rock {11},
Fukunaga, Chou, Peters and Schulte [12}, Flaggs [13], Ohira [l4] and Ogin.
Smith and Beaumont [15,16]. Doubtless a diligent search of the literature would
disclose other related work.

In an important series of papers Wang and Crossman [17,18] and Wang and his
co-workers [19.20,21] have discussed transverse cracking from a different point of
view. And. importantly for the present investigation, the work of these authors
contains some comprehensive experimental data on the progressive transverse
cracking of composite laminates.

Additional work on the loss of stiffness of cracked composite laminates which
is based on three-dimensional stress analysis has been given by Laws and Dvorak
[22.23,24,25] and Hashin [26].

It is not our aim here to give a critical survey of the existing literature. Nor do
we attempt to point out the various similarities and differences between the pub-
lished work and the work described below. Neverthel&ss, there are some major
differences which should be emphasized here. ’

Reprinted from Journal of COMPOSITE MATERIALS, VWol. 22 —October 1988




Progressive Transverse Cracking In Composite Laminates 901

In the first place, the existence of residual stresses is fully accounted for
throughout the whole of this analysis. Actually, we show that such stresses
demand that there is a permanent strain when the applied load is large enough to
cause transverse cracking. Physically this resuit is obvious. However, it turns out,
both theoretically and experimentally, that this permanent strain is negligible.
But perhaps the main difference between the model proposed here and existing
models, lies in our treatment of the statistics of progressive cracking. In par-
ticular we note that Bailey et al. [1-5] assume that cracks always occur midway
between existing cracks, whereas Manders et al. [11] and Fukunaga et al. [12] use
a Weibull strength distribution of the transverse ply in their discussion of progres-
sive cracking. On the other hand Wang and Crossman [17] introduce distributions
of effective flaw sizes and locations in the transverse ply. By way of contrast, the
approach adopted here supposes that a transverse crack will propagate when it is
energetically favorable and that the location of this transverse crack is associated
with a probability density function. Clearly, a crucial issue is the specification of
this probability density function. Based on simple fracture mechanics we suggest
a precise choice for the required probability density, namely that it is propor-
tional to the stress in the transverse ply. Of course, normalization gives the factor
of proportionality. This choice is explored and shown to give good agreement
with experiment.

Given this choice of probability, the only parameter used here which is not de-
termined by standard tests is the so-called shear lag parameter. However, we
show that one can infer this parameter from standard data and knowledge of the
first ply failure stress. We therefore, propose an explicit formula for the deter-
mination of the shear lag parameter £. We remark that the values thus obtained
do not agree with those obtained from a formula. due to Garrett and Bailey {1].

Thus, the present analysis provides a well-defined model for transverse crack-
ing in cross-ply composite laminates based on statistical fracture mechanics. This
model is well-defined in the sense that no adjustable parameters are available to
fit a particular set of experiments. Amongst other things, the model delivers
explicit formulae for the loss of stiffness as a function of crack density, and for
crack density as a function of applied load.

2. BASIC EQUATIONS

For simplicity, we are here concerned with a strictly one-dimensional theory
of symmetric cross-ply composite laminates. In addition, we only consider
monotonic simple tensile loading, see Figure 1. Generalization to angie-ply lami-
nates and biaxial loading will be reported in a further paper.

It is well known that the strength of composite laminates depends upon the
residual stresses due to cool-down. Thus let the initial stresses in the laminate be
o and o7 in the transverse and longitudinal plies respectively. Here, and subse-
quently, the subscripts ¢ and ¢ are used to denote transverse and longitudinal
respectively. Obviously

bol! + do? = 4y
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Uy ~= - . —0a
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Figure 1. Symmetric cross-ply laminate under axial load.

where b is the thickness of the outer 0° plies and d is the half-thickness of the
inner 90° plies, see Figure 1.

As usual, it is convenient to measure displacements from the state of initial
stress with no mechanical loading. In shear lag theory, it is assumed that the dis-
placement of a particular layer is uniform over the thickness of that layer: let u(x)
be the displacement of the 0° layer and v(x) be the displacement of the 90° layer.
The associated strains of the longitudinal and transverse plies are:

w o _dv

€= &= 4 )

Young’s modulus for the uncracked laminate is, in this approximation,

bE, + dE,

E=—0"1T4 &Y

Let a., 0, be the total stress in the respective plies, then overall equilibrium of
the laminate demands that

bo, + do, = (b + d)a, @
——
T
[P a—
O't —-—— " at
———
T
. ——

Figure 2. Stresses on individual layers in the laminate.
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where o, is the applied stress. Also if 7 is the shear stress in the shear layer,
Figure 2, then equilibrium of the 0° and 90° plies separately implies that

- _p o _ 0o s
T=-bm =d— (5)

In this paper we examine cross ply laminates which are subject only to
mechanical loading o, —as well as residual stress. There is no difficulty in extend-
ing the analysis to encompass thermal loading and this will be reported else-
where. The stress-strain relations for the respective plies are, therefore,

g =0l + 7, 7. = E,e,

()

ag=0t+71, 1=Ee¢

In other words, 7. and 7, are the stresses due to mechanical loading. Finally, the
essential ingredient of shear lag theory is that the shear stress 7 is assumed to be
proportional to the relative displacement (v — u):

T=K(v - u) ¢)

where X is a constant.

Analysis of the fracture mechanics of transverse plies requires knowledge of
the strain energy of the laminate —or more precisely the total energy of the lami-
nate. As a prelude to this calculation, we here evaluate the strain energy, per unit
width of the laminate, between two sections PP and QQ, see Figure 3. Now the
increase in strain energy, W, due to the application of mechanical loads 7, and 7,
[see Equation (4)) is equal to the work done:

W = bi(r, + 201)u]$ + d(7. + 20")V]8
¢))
= b{(o, + 0/ )u]8 + dl(a. + oM)V]$

P 1Q
Figure 3. Section of uncracked laminate.
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and we have used the notation
[4]$ = u(Q) — u(P)

In order to obtain Equation (8) it is essential to remember that the applied loads
on the respective plies increase from zero to 7, and 7,, whereas, the residual
stresses are essentially dead loads — hence the factor 2. Clearly we can rewrite (8)
in the form

? 4 - 2 4
— —— — R
H./—bjr [ {(o, + o} )uldx+d]’ ; {(o. + oM)v}dx
With the help of (2), (5), (6), and (7) we may show that

I Pl PRk A P 9
=\ £t EtXx ®

It is now a trivial exercise to derive a complete set of differential equations for
shear lag theory. In order to discuss transverse cracking, the most useful equation
governs the stress in the transverse ply. One form of this equation is

d3o, b : E,
4o £, —%(af *E"-) (10)
where the non-dimensional shear lag parameter § is given by
Kd(bE, + dE))
I o e e L

Let us now consider the straightforward problem associated with two trans-
verse cracks distant 2/ apart, see Figure 4. We are particularly interested in the
elastic field in that part of the laminate which is between the cracks. Thus, the ap-
propriate boundary conditions for Equation (10) are

g.=0 when x= xh )

The required solution is

&
cosh
E, d
g, = (o + —a )|l - (13)
E,
cosh 7
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A

- X

17

- 2d/8 .
Figure 4. Two adjacent transverse cracks in the 90° plies.

The stress in the longitudinal plies is

& &
E . dE, cosh 4 o, cosh d "
0, =—o0, _—_ A -
ok bE, cosh % ’ cosh i

From (2), (6), (13) and (14) we find that the associated displacements are

sinh &

A d? E, d
U="7x+ (o + — o.) + c (15)

E, ¢bE, ' th

cosh —

d

., &

sinh =

o. d E, d
=7 X - r‘ - ¢ 16
V=% i, T E W g ta (16)

cosh —d

where ¢, and ¢, are constants.

3. LOSS OF STIFFNESS

With the help of the results of the preceding section we can now calculate the
loss of stiffness of the cross-ply laminate due to transverse cracking. Thus, let the
average distance between transverse cracks be 2k, Figure 4. Then the average
strain, ¢, , of the uncracked ligament AB, as measured at the surface of the lami-
nate, is given by

_uB) — u(d) . o dE, . th)  die® ¢
€= =g |1+ gy anh |+ o anh an
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where we have used (15). We note that we would still recover (17) if we were to
consider any two sections distant 2A apart. A trivial rearrangement of (17)
together with use of the crack density parameter

B = dih
now yields
- Bdot £ BdE, £
0.—Eoe.—£b£.'tanh5 {l-!-ebE'tanhB (18)

which is the effective stress-strain relation for the cracked laminate. We observe
that Equation (18) shows that, under cracking, the laminate acquires a permanent
strain, ¢,, due to initial stress:

do?
& =% b mh§ (19)

It would be misleading to give the impression that the permanent strain (19)
were important either experimentally or theoreticaily. In fact for all laminates
considered here the shear lag parameter lies between 0.5 and 2.5—as is discussed
later. Accordingly the value of ¢, is at most 5% of the value of ¢, in the worst pos-
sible situation, i.e. 8 large. Hence we can neglect ¢, in applications and arrive at
the elegant formula for the Young'’s modulus E(S) of a laminate containing trans-
verse cracks of density 8:

- BdE &)
EPR) = Eotl + £ BE, tanh B‘ (20)
We note that as the crack density 8 — 0, £ — E, as it should. In addition as
B — o we see that

E— E.,(l + dE, ) bE,

BE, | T b+ d -

which is the result given by ply discount theory.
An assessment of the validity of Equation (20) will be given in Section 5 when
we have evaluated the shear lag parameter £.

4. PROGRESSIVE CRACKING

We now turn to the problem of determining the transverse crack density 8 as
a function of the increasing applied load o, . Consider the uncracked ligament AB
as in Figure 4. When the applied load o, reaches a critical value, this ligament
will itself crack at some location C as in Figure S. There is no reason to suppose
that C lies at the mid-point of AB. Assuming that the additional cracking is pro-
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Figure 5. The ligament AB with an additional crack at C.

duced under fixed loads, we can use the analysis of Section 2 to calculate the
required energy release rate.

Let us temporarily regard the configuration of Figure 4 as state 1 in which the
displacements are u, and v,, whilst the configuration of Figure 5 is state 2 with
displacements &, and v,. From (8) the strain energy, per unit width, of the
ligament 4B in state 1 is:

W, =bl(a, + oMu,)4 + dl(o. + o®?)v,)4
@n
={(b + d)o. + bol} [w]% + dol [v]4

since 0,(4) = o0.(B) = 0. Also the combined strain energy, per unit width, of
the two ligaments AC and CB in state 2 is, from (21),

Wy = {(b + d)o, + bal] {[u:)5 + (e} + dofiw]S + ]2} (22)
But u, is continuous at C, hence
[4:]5 + (ua]2 = [u:]4 (23)

Under the assumption of cracking at fixed loads, the work done, per unit width,
on the segment AB when the extra crack occurs at C is

2bloy(us — u)]% = 2(b + d)o.[ur — u,)4 (24)
Thus the total energy, &, per unit width, released by introduction of the crack at
C is the work done by the applied loads minus the increase of strain energy. From
(21) w0 (24) we have:
E=2b + d)oufir — w)i - (W, — W)

= [(b + d)o, + dol}[u; = u,]% + do®[v, — »]S + do?{v, — v;]2
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A series of routine, but tedious, calculations shows that

_Mdb+dE , E RLY & &
&= EHEE, (a.+an.)3[tanh2d +tanh2d —tanhd]

But the energy release rate G, per unit length, for crack propagation across the
ply is determined from G = &/2d, see Dvorak and Laws [24). Thus

_ 46 + dE, E N N ]
G = EHEE, (af+&o.)‘{mhu+mnh2d—mnhd}

25)

It is now easy to obtain a first ply failure criterion from (25) by taking A, A,,
h,, to be large and setting G = G.. The result is

.| BEEG. 1" E
o = d(b+d)E.l - (26)

When we are given standard data, namely b, d, E,, E,, the coefficients of ex-
pansion and the temperature drop during cool-down, we easily calculate ¢* and
E,. Thus (26) provides a relationship between 047, G. and £. However, 0%/ and
G, are readily measured, and we therefore regard Equation (26) as the rule which
determines the shear lag parameter £.

Once £ has been so determined. Equation (20) provides an explicit formula for
the loss of stiffness of the laminate.

As for subsequent cracking, a major complication arises because the location
of the “next” crack cannot be obtained by deterministic methods. Indeed, this is
precisely the situation indicated by experiment. Thus we must proceed on a
statistical basis.

In order to analyze progressive cracking, suppose that the laminate contains
transverse cracks with average separation 2k with associated crack density
B = d/h as in Figure 4. Then the next crack which appears in the ligament 4B
will be at some location C as in Figure 5. Let 0.(h,) be the applied stress which
is needed to produce the crack at C. We can determine o,(h,) directly from (25)
by setting G = G.. When use is also made of (26), it follows that

-1/2
ih'—-t-tanhihl--tanhi —-éof

E
a.(hy) = (o + F" of) tanh = nh =~ i E

Qn
Since the location of C is, in an appropriate sense, random, let p be the prob-

ability density function for the site of the next crack. Thus in a laminate which
already contains cracks of density 3, the expected value of the applied stress to
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cause additional cracking is
P/ ]

Ele.(B)] = s P(y) a.(y)dy (28)

[]

where a.(y) is given by (27). The choice of probability density function is
crucial. Three candidates immediately present themselves.

Case 1

An extreme situation would arise if the next crack were guaranteed to occur at
the mid-point of the unbroken ligament. This would imply the choice

p(y) = 8y - h) (29)
where §( y) is the Dirac delta function.

Case 2

Another extreme would be to assume that all locations in the ligament were
equally likely, giving

1
p(y) = ey 30)

Case 3

A more appealing hypothesis, based on simple fracture mechanics, would be
to assume that p( y) is proportional to the stress in the transverse ply:

p(y) = a.(y)
Thus from Equation (13) withx =y — A

1 coshi(-y—‘-ii'l tanh%
PN =gt -—— Il -5 (31)
cosh—d— 7

For Case 1, we can obtain the explicit solution

El0.B)] = (' + % oM)|2 tanh 5% —am £ - 2o

But for Cases 2 and 3, the integral must be evaluated numerically.
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5. COMPARISON WITH EXPERIMENT

In the first place we compare the predictions of the foregoing theory with some
experimental data of Highsmith and Reifsnider [8]. These authors reported data.
and some theoretical results, for several E-glass-epoxy systems. Of particular
concern here are the data for (0, 90,), specimens.

The data for the E-glass-epoxy systems studied in [8] are as follows

E, = 417 GPa E. = BOGPa
o = 84 MPa o/ = 55 MPa
ply thickness 0.20 mm.

Unfortunately Highsmith and Reifsnider [8] do not give a value for G.. However,
the data given above has been used by Laws and Dvorak {25] and by Hashin {26]
to validate the luss of stiffness given by the self-consistent model and a lower
bound prediction respectively. The Hashin [26] lower bound and the experimen-
tal data are displayed in Figure 6. We remark that the self-consistent prediction
is not indicated in Figure 6 because it is only marginally greater than the Hashin
[26] bound and thus the two curves are virtually indistinguishable.

But in order to obtain the shear lag prediction for loss of stiffness, lack of a
definite value for G, poses a problem. In this connection we note that in an earlier

1.2

G =193, 250 Jm2

-
o
]

o
[+ ]
1

o
>
1

o
[V
1

Normalized stiffness (E/E,)
Q
[+
1

0

] T Ll
0 25 5.0. 75
Crack density (cracks/cm)

Figure 8. Experimental and theorstical vaives for stiffness loss of (0,90,), E-glass epoxy,
laminate: (1) Highsmith-Reifsnider pregiction <= , (2) shear ag——, (3)
lower bound . Experimental data from Refsrence [8].
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paper Dvorak and Laws [24] studied some E-glass-epoxy systems and used the
value G, = 250 Jm2. If we were to use the same value here, then Equation (26)
would imply the value £ = 0.7. The loss of stiffness predicted by Equation (20)
is indicated in Figure 10. We note that the resulting curve gives reasonable agree-
ment with experiment but violates the Hashin lower bound for small crack den-
sities. We might be prepared to accept this state of affairs as being an unfortunate
but unavoidable consequence of the approximate shear lag theory. However, a
more reasonable interpretation is that the ad hoc choice of G. = 250 Jm-? is not
correct. In order to develop this line of reasoning we note that the maximum
value of G, which implies that the predicted loss of stiffness is entirely consistent
with the Hashin bound is G. = 193 Jm-2. This in turn implies that £ = 0.9 and
thus a predicted loss of stiffness which is shown in Figure 6.

For completeness Figure 6 also shows the comparison between the theoretical
prediction of Highsmith and Reifsnider [8] with their experimental data.
Although these authors also use a form of shear lag theory, it is not easy to com-
pare their model with the theory given here. )

We note that, for the graphite-epoxy systems discussed later, data is complete
and there is no ambiguity in the value of G. and hence of £.

Despite the incompleteness of the data for the E-glass systems, comparison of
theory with experiment for the loss of stiffness of (0, 90;), laminates ~annot be
regarded as decisive. In the first place the loss of stiffness of typical graphite-
epoxy systems due to transverse micro-cracking is minimal. In the second, the
major advantage of the shear lag model lies in its ability to provide an explicit
prediction of crack density as a function of applied load. In fact, if we agree to
determine £ from Equation (26), shear lag theory does not conain any adjustable
parameters. Rather, we need to identify the correct probability density function.
Once the choice of p( y) has been made, the statistical theory presented here is
well-defined.

Let us now turn to the Highsmith-Reifsnider [8] data for crack density as a
function of applied load. In view of our earlier discussion we here take G. = 193
Jm-* which implies that £ = 0.9. Theoretical results for crack density as a func-
tion of applied load can be obtained from Equation (28) for the three choices of
probability density function (29), (30) and (31). The various curves and the data
are shown in Figure 7. We note in passing that the numerical evaluation of some

of the integrals requires considerable attention to detail. Clearly the most promis-
ing choice of probability function is Case 3. Indeed one can make a strong a
priori argument for Case 3 based on elementary fracture mechanics. We there-
fore propose the use of the probability density function (31) as appropriate for the
prediction of progressive cracking.

It is of interest to show the sensitivity of the predicted crack density to the value
of G.. This is indicated in Figure 8 wherein it is clear that the theory makes the
(necessary) prediction that the tougher the material the less the crack density for
given load.

We now turn to some different work by Wang and Crossman [17-21). The work

‘of these authors is exclusively concerned with graphite-epoxy systems and is

centered on the prediction of crack density as a function of the applied (mono-
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tonic) load. Those parts of the work of these latter authors which are devoted to
fatigue are not relevant to the present discussion.

For our present purpose the most convenient source for data is the survey
article by Wang {20]. We first consider the AS-3501-06 graphite epoxy systems.
Resuits for (0, 90),, (0., 90,), and (0., 90;), laminates are given in Figures 11,
12 and 13 of Wang's [20] article. When we make use of the data quoted by
Wang [20], see also [21], we find the values of the shear lag parameters are as
follows ' .

(02’ ”)l s = 093
©,, 901): £ = 1.38
(oiv m!)l . £= 2.24

Comparison of the respective shear lag predictions with the experimental results
are shown in Figure 9. The reader’s attention is drawn to the fact that we have
omitted Wang’s {20] numerical results from Figure 9 because it is impossible to
do justice by replicating the published graphs. The important observation is that
both shear lag and the Wang-Crossman theory give very good predictions. This

20
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Figure 9. Theory versus experiment for progressive cracking of AS-3501-06 laminates. Data
from Wang [20].
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Figure 10. Theory versus experiment for progressive cracking of T300/934 laminates. Data
from Wang [20].

is quite remarkable since the respective theories are based on entirely different
premisses.

Finally, we turn to the data reported by Wang [20] for some T300/934 lami-
nates. Again we use the data given by Wang {20,21] to obtain the following values
for £ for the indicated lay-ups:

(0, 90,, 0) £ =108
(09 %Jv 0) E = l.m -
(0. 90, 0) £E=1D9

The theoretical predictions are compared with the experimental data in Figure 10.
Again it is encouraging to report excellent agreement.
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ABSTRACT

A HEXAGONAL grain array model is used to study grain boundary microcracking of a polycrystalline
aggregate due to residual stress. Each grain is assumed to be elastically isotropic but thermally anisotropic.
The axes of thermal anisotropy for each grain are arbitrary. An explicit analytic solution is obtained for
the entire residual stress field. This solution is used to give a detailed description of the grain boundary
stress fields. Further, explicit algebraic formulae are given for stress intensity factors associated with grain
boundary microcracks. The results are used to predict the critical grain size for the occurrence of spon-
taneous microcracking. Agreement between theory and experiment is good.

1. INTRODUCTION

THis PAPER is devoted to the study of grain boundary microcracking in single phase
polycrystalline brittle solids due to cooldown. It has long been held (CLARKE. 1964 ;
CLEVELAND and BRADT, 1978 ; DAVIDGE, 1981 ; Evans, 1978 ; Fu and Evans, 1982,
1985; Kuszyk and BRADT, 1973; OHYA et al., 1987) that residual stresses in

- polycrystalline aggregates are due to thermal expansion anisotropy—it being

invariably assumed that each grain is elastically isotropic. There is complete agreement
that there is a critical minimum grain size for microcracking to occur. Further, there
is agreement that for given cooldown temperature change (AT), Young's modulus £,
difference between the larger and the mean coefficient of thermal expansion (Ax) and
grain boundary toughness (G,), the formula for the critical facet length (/) is of the
form

“ = CFaaay ®

. where Q is a constant. It is not our intention to give a critical review of the various

arguments which have been used to arrive at proposed values for Q. All that need be
said is that some authors use approximate stress analysis whereas others choose Q to
fit certain experimental data.
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The aim of the first part of this paper is to present an explicit analytic solution of
the residual stress problem. This analysis is then used in conjunction with convenuonal
linear elastic fracture mechanics to predict the critical grain size.

It is important here to note a recent paper by TVERGAARD and HUTCHINSON (1988)
which addresses the problem of residual stress microcracking within the framework of
thermal expansion and elastic anisotropy. For obvious reasons, it is difficult to
compare the predictions of the analysis presented here, which is based on isotropic
elastic response, with the TVERGAARD and HuTtcHiNsoN (1988) work. But some
discussion of the respective predictions is given.

Finally, we wish to draw attention to the work of FREDRICH and WonNG (1986)
which addresses the related problem of thermally-induced microcracking of rocks.
These authors assume elastic isotropy together with thermal anisotropy and provide
a thorough analysis of the two-dimensional model consisting of a square inclusion
embedded in an isotropic aggregate.

In this paper. we follow Evans (1978) and Fu and Evans (1985), by considering a
plane hexagonal grain array embedded in an infinite isotropic elastic matrix (the
effective polycrystalline aggregate). The orientation of the axes of thermal anisotropy
of the individual grains is allowed to vary. In Section 2, we give the general solution
of the residual stress probiem using complex variable methods. Amongst other things,
the analysis confirms a result due to Evans (1978) that the stress singularity at a triple
point is logarithmic. We go on to discuss the stress intensity factors at putative cracks
on grain boundary facets. It is especially noteworthy that we are able to evaluate ail
the integrals analytically and thus reduce the determination of stress intensity factors
to the evaluation of an algebraic sum.

To determine the residual stress field in an array with given orientation distribution
of the axes of thermal anisotropy, it is necessary to add the contributions due to each
facet. The question therefore arises as to how many grains need be considered in order
to get accurate results. It turns out that it is essential to consider at least 200 grains
to get proper accuracy.

Since the orientation distribution of the axes of thermal-isotropy is not known. it
is argued that the appropriate model for spontaneous microcracking of randomiy
oriented arrays is to take the most extreme local orientation at the considered interface.
together with the ensemble average over all other grains. This interpretation shows
that one can interpret the 2-grain and 4-grain models of Fu and Evans (1985) in a
new light.

In Section 4 we use the results of our exact stress analysis to predict the minimum
facet size for microcracking during cooldown. We show that the factor Q in (1) is
very sensitive to the assumed length of the inherent flaw in the solid. Finally, we
compare the predictions of this analysis with those of other workers and with some
experimental data.

2. ANALYSIS

A standard model of a polycrystalline solid consists of a regular hexagonal array.
see Fig. 1. In the study of microcracking due to residual stresses. it is usual to assume
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Minimum

direction

FiG. 1. Hexagonal grain array. Also shown are the global and local coordinates for the rth grain.

elastic isotropy and thermal anisotropy of the individual grains with the proviso that
the coefficient of thermal expansion in the x, direction of Fig. 1 is the same for every
grain. At the time of writing, little or no data is available concerning the orientation
distribution of the axes of thermal anisotropy. Thus,we are led to the study of models
with various orientation distributions. However, throughout this paper, we will focus
on the micro-geometry shown in Fig. 1. We will show that the determination of
residual stresses can be accomplished for arbitrary orientation distributions of the axes
of thermal anisotropy. Accordingly, we defer the introduction of specific orientation
models to Section 3.

The residual stress problem is, perhaps, most readily discussed with the help of the
notation of Laws (1973). Thus, for the rth grain, the constitutive equation is

¢ = Mo’ +6m’, (2

where ¢" and o’ are respectively the strain and stress in the rth grain. M is the common
(isotropic) compliance tensor and 6 the increase in temperature from the stress-free
configuration. Also, m’ is the tensor of coefficients of thermal expansion.

When referred to the local axes of thermal symmetry, Ox’x5x;, see Fig. 1, the
tensor m’ is expressible in the form

a, 0 O
m = 0 - 3 0 . (3)
0 0 A3

The components of m” with respect to the global axes Ox,x,x, are then found by
tensor transformation :
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FiG. 2. Grain array showing those grains which are considered in the various N-grain models.

my, = a,cos’8,+2x,sin"0,,
m), = (a;—a,)sinf,cosd,,
mh, = x,sin @, +a,cos*6,,
my; =y =0, my; =a, ' @

For the polycrystalline aggregate as a whole, it is obvious that the macroscopic
compliance is M. Also, it is not difficult to show that the macroscopic tensor of
coefficients of thermal expansion, m, is just the orientation average of m” taken over
all grains:

= {m'}. &)

With the help of (4), it is easy to calculate the overall coefficient of thermal expansion
for arbitrary orientation distributions of the axes of thermal anisotropy.

Throughout this paper, we will assume that the polycrystalline aggregate has macro-
scopic thermal isotropy so that

my, =my;; =m3; =42, 6)
myy =my =m;=0.

Nevertheless, we note in passing that it is easy to extend the analysis to textured
aggregates.

The residual stresses in the microcrack-free solid maybe calculated using the
ESHELBY (1961) technique. This calculation is performed by considering the configur-
ation of Fig. | (see Fu and Evans, 1985) wherein the hexagonal array is surrounded by
a material whose properties are those of the effective aggregate. The number of grains
considered is at our disposal. Thus, for given orientation of the thermal axes of an
array, we can have a hierarchy of models. To emphasize the point, let us suppose that
we are interested in the interfacial stresses on a particular facet, AB. in Fig. 2. In the
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first instance, we can consider the 2-grain model consisting of the two grains labelled
1 surrounded by the effective aggregate. Next, we can consider a 4-grain model
consisting of the two grains labeiled 1 plus the two grains labelled 2 surrounded by
the effective aggregate. As shown in Fig. 4, we can then consider the 2+2+6 = 10-
grain model, followed by the 2+2+46+12 = 22-grain model, etc. Clearly, other
models for the given orientation are possible. However, as the considered number
of grains increases, the predicted stresses on the facet AB will tend to a limit. An
important part of this investigation is to determine the number of grains which must
be considered in order to get accurate estimates of the stresses on the facet AB.-

Returning now to the general problem, we recall that the Eshelby method requires
that each grain and the surrounding matrix be considered as isolated and the tem-
perature increased by 8. Thus, the rth grain is now subject to strain 6m,. We next
strain each grain so that it has the same strain as the surrounding matrix and all grains
can then fit together into the matrix. The required extra strain of the rth grain is

& = 6(m—m") 4]
and this is accomplished by the application of surface stresses s, where
se=Lg, (L=M""). t)

The final step in the procedure is to superpose a layer of body force over the surface
of each grain to annihilate the surface tractions obtained from (8). Thus, on the
interface between the rth grain and the gth grain, the resultant superposed body force
is

t=—sn-s;(—n)

(s{—s)n
= §L(m, —m,)n, v

where n is the unit normal from the rth grain to the gth grain. We note that the
traction vector t is constant over the interface. It then follows that the entire residual -
str-.7s distribution in the uncracked body is obtained by superposition of the stresses
s; a ! the stresses induced by the totality of interfacial body forces (9). It is important
to re...ember the contribution to the stress field due to the interface between the outer
grains and the surrounding matrix.

It is therefore clear that the residual stress problem for the microcrack-frec aggregate
is solved once we can evaluate the stress distribution in an infinite solid due to constant
body force over a single line segment—superporsition gives the final solution. This
problem is readily solved using complex variable methods.

First, consider a point (or, more precisely, line) force with components P, P at
the point represented by the complex number =5 = x+iy, in an infinite isotropic
solid. For this problem, it is well known that the complex potentials are given by

o(x) = In(z2—-2,), (10)

T 2n(k+1)

L an

kP :
¥() = ———1n (:—Zo)+305t(,c_+|) 2=z

n(k+ 1)
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where P = P, +iP,. Also, since we are interested in plane strain, x = 3-dv, but the
work described below also applies to generalized plane stress when x = (3 —v)/(1 +v).
Next, consider the straight line segment joining two vertices (i.e. triple points) =,
and :,, and suppose that this segment (grain boundary facet) is subject to uniform
distributed body force ¢ = ¢, +it, per unit length. It may be shown that differentiation
of (10) and (11) with respect to z, followed by integration along the segment z,=z,,
implies that

f tjw} z2—12,
R =¢'() = 2n(x+l)wlnz—:l ’ (12)
ey (kiw+1d)|\w|, z—=z, _ tlwl Z, _ 4
¥E) =) = 2n(x+ 1w nz—z, 2n(k+ Do [ ) ] a3

where w = z;—z,. It is now possible to obtain the complex potentials for the entire
distribution of body forces over grain boundary facets and thus, the residual stress
field in the uncracked solid. While the algebraic details are too cumbersome to be fully
reported here, some particular considerations, related to the stress singularities at the
triple points, are useful.

From (12) and (13) the total complex potentials are clearly of the form

() = kZ A ln(z—z), (14)
-]
(= - > - Al
@)= T BlnGz—z)- 3 2%, (15)
k= | km |~ -k

where 2, (k = 1,2,...N) is the set of triple points and where 4,, B, are a set of known
constants. With the help of the standard formulae

Tty = 2{0() +0()},
a,, +ig,, = OC)+0() + 30 (=) +'¥(2).

we can compute the stresses in the form
N -
Ot+0, = 2{.2 [Aeln(z—z) + A ln (E—Ek)]}. (16)
-l

pbivy = T (At BYIn =20+ A (i e L AEE )

—Zk

Equation (17) immediately suggests the possibility of an r~* type singularity at each
triple point. However, if we write

2 = reexp (i6,),

then it is clear that
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FiG. 3. Grain boundary crack of length 2a at the distance b from the tripie point A.

-7

= = exp (—2i6y).

— T
4

N

Hence there is no r~' type singularity and the only stress singularity is logarithmic.
Obviously, this singularity exists at every triple point, provided the axes of thermal
anisotropy of the three associated grains do not coincide.

It is abundantly clear from (9), (16) and (17) that evaluation of the global
residual stress field has been reduced to an algebraic problem. However, the complexity
of the algebra should not be underestimated.

Let us now turn to the evaluation of stress intensity factors which are relevant in
the study of grain boundary microcracking due to residual stress. It is commonly held
that grain boundary microcracking is due to triple point defects. But there remains
the possibility that defects occur elsewhere on the grain boundary. Since the stress
intensity factors for arbitrarily located grain boundary cracks are readily inferred
from our previous analysis, we consider the putative crack CD on the facet AB as
shown in Fig. 3. For the required calculations it is convenient to orient the global
x,-axis along that facet. It then follows that the interfacial normal and shear stresses
are given directly by (17).

A standard result in linear elastic fracture mechanics shows that the stress intensity
factors at D are obtained from

. | S ) +t
Ki+iKy = 7= (0, +i) /Z—_—ldt. (18)
M -a B

From (17) and (18) we observe that the calculation of K, and K|, involves the
evaluation of some elementary integrals together with integrals of two types:

1
J = J +e Ly,
l-tt+c

1
1
7 =I Hn+odr,
N1

where ¢ is complex and |¢| < 1. The values of J; and J, may be obtained in closed

form as
1\
n={-))
c+1

Jy=rle—(c*=-1)" +In{c+(c*=1)"} ~In2).
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F1G. 4. Grain array with regular orientation distribution.

With the help of these explicit expressions for J, and J, it follows that the deter-
mination of stress intensity factors in the aggregate has been reduced to a simple
algebraic sum. It is neither illuminating nor necessary to include details of the tech-
niques which we use to handle the orientation distributions of the axes of thermal
anisotropy and the summation over various grain arrays.

We emphasize that the preceding discussion also shows that we can readily compute
residual stresses and the associated stress intensity factors for grain boundary micro-
cracks for an arbitrary crystalline array, regular or otherwise.

3. THE REsmuUAL STREss FIELD

The analysis presented in preceding sections provides an analytic solution for the
entire residual stress field in the polycrystalline aggregate. From a practical point of
view the usual thermoelastic moduli of an individual grain are taken as data, but the
orientation distribution of the various grain arrays is not available at the time of
writing. Thus, it will be essential to quantify the effect-of grain onentation on the
residual stress field and hence on microcracking during cooldown. However, from a
computational standpoint, the first issue to be addressed must be the determination
of the number of grains which is needed to get an accurate value for the interfacial
stresses.

For illustration, we consider the regular orientation mode! shown in Fig. 4. First
we remark that for this model, the overall coefficients of thermal expansion may be
obtained from (5) as

my =my = (2, +a,)/2, my; =2;.

At this stage, it is helpful to introduce some notation which is consistant with that of
Evans (1978). Thus, let the temperature drop during cooldown be A7, let the differ-
ence between the maximum thermal expansion coefficient and the average be denoted
by Aa. and let / be the facet length.
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F1G. 5. Residual stress at the midpoint of AB vs number of grains. Note the variable scale on the x-axis.

We successively compute the normal and shear stresses, on AB, for the 2-grain
model, the 4-grain model, etc. The predicted value of the normal stress at the midpoint
of AB, for the various muiti-grain models, is shown in Fig. 5. We note that it is
essential to consider an array consisting of at least 200 grains to get an accurate
estimate of the normal stress at the midpoint of the facet. We cannot emphasize
too strongly that the preceding assertion also applies to other fixed orientation
distributions. For example, we have investigated the grain orientation distribution
studied by TVERGAARD and HUTCHINSON (1988), and we have found that the results
obtained using our technique with 268 grains are entirely consistent with the finite
element resuits of these authors. Thus, we repeat, that in order to get accurate
predictions of the residual stresses on a particular facet in a given polycrystal, it is
necessary to consider at least 200 grains surrounding that facet.

It is of interest to use Fig. 6 to calculate the residual normal stress on the facet AB
for the particular alumina' AD995. Here we can take

s
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FiG. 6. Residual stress along the grain boundary AB for various grain arrays.
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F1G. 7. Geometries and orientations for (a) 2-grain model and (b) 4-grain model.

E=372GPa, v=0.25,
Az =10"°C~', AT =1500°C,

and it follows that the normal stress at the midpoint of AB is 150 MPa. This result
may be contrasted with the tensile strength for AD995 which is 262 MPa.

An equally important issue pertains to sensitivity of the interfacial stresses to the
assumed orientation distribution of the axes of thermal anisotropy. As has been
emphasized, the orientation distribution function for a typical polycrystal is not
known. Indeed, it is evident that the orientation distribution will vary from sample
to sample. Therefore. when we examine models in which the orientation distribution
is not fixed a priori, it is clear that we need to consider the appropriate ensemble
average. In this sense we can arrive at an alternative interpretation of the various
multi-grain models.

To explain, let us focus on the facet which will experience the greatest residual
normal stress. We therefore consider two grains whose maximum contraction will be
perpendicular to their interface, see Fig. 7(a). Now regard these grains as fixed. Since
the orientation of the remaining grains is random, we can compute the ensemble
average of the interfacial stresses by considering a large number of samples with
randomly oriented axes of thermal anisotropy. But it is evident that the model obtained
by taking two fixed grains together with the ensemble average over all orientations of
the surrounding grains is equivalent to the model in which the two fixed grains are
surrounded by the effective aggregate. We refer to this model as the 2-grain modei
for the randomly oriented aggregate. This mode! will give us the average stress on the
interface AB. In similar fashion we can consider the model associated with the 4 fixed
grains of Fig. 7(b). The model in which these 4 grains are surrounded by the effective
aggregate, will give us the average stress on AB—the average referring to all orien-
tations of the remaining grains. In this way we can arrive at the N-grain model for
the randomly oriented aggregate. .

It is obvious that the matherhatics of the N-grain model for the aggregate with
given a priori orientation distribution is the same as the mathematics of the V-grain




Microcracking in polycrystalline ceramics 613
40 TS 75 T T T

K (u+1)YpdadTVT

2.0

FiG. 8. Mode [ stress intensity factors for cracks variously located in the facet AB: regular array orientation
model.

model for the randomly oriented aggregate. However, the physical interpretation of
the two models is completely different. To elaborate, we refer to Fig. 6, which amongst
other things, shows the predicted normal stress for the 2-grain model of the given
regular orientation distribution of Fig. 4. But we can also interpret the 2-grain model
curve in Fig. 6 as giving the average normal stress on AB for a polycrystalline
aggregate wherein two grains are held fixed and the remainder ailowed to take all
orientations.

While the magnitudes of the residual interfacial stresses are of interest and sig-
nificance in their own right, it is perhaps more relevant to consider, in greater depth.
the stress intensity factors which would exist at the tips of interfacial cracks. Indeed
a careful analysis of the various stress intensity factors is an essential prerequisite to
any understanding of microcracking due to cooldown or subsequent mechanical
loading.

We first consider the regular array orientation of Fig. 4 and examine the stress
intensity factors for variously located cracks on the interface AB, as shown in Fig. 3.
We emphasize that for this configuration, the directions of maximum contraction of
the grains on either side of AB are normal to the interface. The mode I stress intensity
factor is shown in Fig. 8 as a function of initial defect length for various locations of
the defect. We here restrict our attention to 2a// € 0.3. We see that for given initial
defect length, the most critical crack emanates from the triple point. In addition, we
emphasize that X is sensitive to the length of the initial defect.

Figures 9 and 10 show the variation in stress intensity factors at the right hand tip
for triple point cracks on AB within the regular orientation array of Fig. 4. except
that the orientation of one grain is allowed to vary. We note the sensitivity of the
results to orientation of the single grain at the left of the critical triple point. In the
same spirit, Figs 11 and 12 show the effect of changing the orientation of one grain
to the right of B in the otherwise regular array of Fig. 4. In either case. K|, is much less
than KX,. Finally, we investigate the effect of changing the orientation of the single
grain above AB. The effect of orientation on K; and X|; as a function of orientation .

isshown in Figs 13 and 14. We note that, even for small defects, the effect of orientation
can be significant.
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F1G. 9. Mode I stress intensity factors for various orientations of the grain to the left of the triple point
crack—in the otherwise regular orientation array.
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FIG. 10. Mode II stress intensity factors for various orientations of the grain to the left of the triple point
crack—in the otherwise regular orientation array.
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FIG. 11. Mode I stress intensity factors for various orientations of the grain to the right of the triple point
crack—in the otherwise regular orientation array.
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F1G. 12. Mode I1 stress intensity factors for various orientations of the grain to the right of the triple point
crack—in the otherwise regular orientation array.
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FiG. 13. Mode I stress intensity factors for various orientations of the grain above the triple point crack—
in the otherwise regular orientation array. :
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F1G. 14. Mode II stress intensity factors for various orientations of the grain above the triple point crack—
in the otherwise regular orientation array.
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F1G. 15. Mode [ stress intensity factors, for triple point cracks, for various grain arrays.

It is inappropriate to produce a multitude of figures to show the sensitivity of the
stress intensity factors to orientation changes. Nevertheless, we can assert that. for
the regular orientation array, microcracking is essentially a mode I phenomenon and
that the orientation of contiguous grains is important.

Next, we consider some problems associated with the possibility of random orien-
tation of the axes of thermal anisotropy. Here we focus on the 2-grain and 4-grain
models in Fig. 7 which were discussed earlier. Hence, these models will give us ensemble
averages for the stress intensity factor. Figure 15 shows the stress intensity factors
which are predicted by the two models. For comparison. the regular orientation array
result is also included in Fig. 15. Of course, for the regular array K;; = 0.

The obvious, and disconcerting, conclusion is that the various models give sig-
nificantly different results. The status of the regular orientation array is clear. And it
is likely that the 4-grain model of Fig. 7(b) gives the most extreme local orientations
for potential cracking on the interface AB. Thus, when we consider grain boundary
microcracking, we compare the regular orientation model with the 4-grain model.
The reader is warned that other models give different results.

4. GRAIN BOUNDARY MICROCRACKING

The prediction of initial microcracking during cooldown is achieved by focusing
on the worst possible scenario. Thus, we consider triple point cracks within the regular
orientation array or the 4-grain model of Fig. 7(b). We recall that for practical
purposes, K, is negligible. From Fig. 15 we have

Ki(x+1 2a

Kile+1) = f(T) , (19)
HAGAT /1

where f depends upon the considered model. Next let G,, be the grain boundary,

mode I, plane strain toughness. It then follows from (19) that microcracking during

cooldown first occurs at critical grain size, /., where
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[ = 64(1 -v°)G,, . (20)

. of 2a

E(AaAT)jfz(T)

where 2a is the length of ths inherent triple point crack. An important parameter here
is the ratio (2a/l;). As is obvious from Fig. 15, f changes rapidly for 0 < 2a// < 0.1.
It is therefore clear that any prediction of critical grain size is highly sensitive to the
flaw size in the material.

Let us now discuss some critical grain size predictions for specific polycrystalline
ceramics. In the first instance we consider the magnesium titanate system studied by
Evans (1978). For this system Evans (1978) suggests 2a/l = 0.1. We can then read
off the value of f(0.1) from Fig. 15:

f(0.1) = 2.85 (regular orientation array)
= 3.99 (4-grain model).

If we take the value v = 0.25, the above formulae in turn lead to

l. =739 (regular orientation array),

Gy
E(AaAT)?
=4.02 _ G __ (4~ in model)
= M E@aary? T E? '
The most recent formula proposed by Fu and Evans (1985) is

_ B1+v)’G,,
" E(AadT)?

The factor B is chosen to be approximately 3.5 in order to get an adequate correlation
with experiment. If we interpret correctly, the proposed formula is independent of the
ratio (2a/l). For v = 0.25 the Fu and Evans (1985) formula becomes

G
E(AaAT)*

To calculate the critical grain size, we use the data given by Evans (1978), namely

E=240GPa, Ax=5x10"°C-', AT =1000°C.

[A @

L. =547

In addition, Evans (1978) suggests that the value of G;, lie between 2 Jm~* and 10
Jm~ % The various predictions of the three models are

I, = 4.9-24.6 um (regular orientation array)
= 2.7-13.4 ym (4-grain model)
= 3.6-18.3 um (Fuand Evans).

The critical average grain size inferred from experiment [2] is about 3 um, but as
emphasized by cvans (1978), the experimental value must be interpreted with care.
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In the same spirit, we wish to emphasize the critical role played by the assumption
that (2a/l) = 0.1.

Next we turn to the Al,O; studied by RICE and PoHANKA (1979) and by TVERGAARD
and HuTCcHmNsON (1988). Following these authors we here take

E=350GPa, v=0.2, Ax=0.55x10"°C~!, AT = 1000°C,
2a/l=0.02, Gy =2Jm™2
From Fig. 14
£(0.02) = 2.21 (regular orientation array)
= 2.63 (4-grain model).
It now follows that
. = 240 um (regular orientation array)
= 170 um(4-grain model)
= 103 ym (Fuand Evans).

TVERGAARD and HUTCHINSON (1988) also studied this Al,O; system with the help
of their periodic array and found /. = 216 um. For the same array, the present model
gives [, = 218 um. The experimental value is [, = 200 um.
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The effect of microcracks on energy density

13.1 Introducton

In receat years, there has been considerable interest in the response of
polyccystailine brittle solids which contain 2 homogeneously distributed
fammily of miczocracks. As far as the anthor is aware, the quantification of the
effect of such 2 popuiation of microcracks on the macroscopic respoase of the
solid was initiated by Budiansky and O°Conneil (1]. Other contributions have
been given in a series of papess by Evans and coworkers [2-6], Hoagland and
Embury (7], Clarke (3], Hoenig (J], Laws and Brockeabrough (10, 1]
Hutwchinson (12] and Charalambides and McMeeking (13].

The topics of major concemm in this literature are the loss of stiffness due
to 2 given family of microcracks and the aucleation of further microcracks,
In addition, there is considerable interest in the extent to which miccocracks
in the process zone of 2 macrTuscopic crack can have a shielding effect on
the macroscopic cack tp. These issues are further discussed in this paper.
The deveiopment is presented in the same spirit as those of earlier studies
(1-13].

All the foregoing contributions refer to open microcracks. And, for the most
part, the respective authors focus on loss of macroscopic stiflcess, rather than
change of macToscopic energy density - sincs the latter (whea relevant) is
trivially obtained from the former.

At this stage of our discussion it is, perhaps, essential to emphasize 2 point
which is developed by Hutchinson [1Z] aod by Charalambides and
McMeeking {13], aamely that existence of the standard microscopic energy

G.C. Sth and E.E. Gdoucas (eds): Mechanics and Physics of Enargy Densicy, 139777
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density does oot imply existence of 3 macToscopic emergy demsity in
a microcracking solid. In (act, as will be showa later, severe restrictions must
be piaced on the microcrack sucleation function in order that the microcrack-
ing polycrystalline aggregate can be regarded as macroscopically hypereiastic,
In addition we draw atteation to the important paper of Horii and Nemat-
Nasser (14] which pertzias 0 the eifects of microczack closure and friction on
the macToscopic response. These authors show that the macroscopic com-
pliance tensor of such a2 solid depends on the load path and aeed not even be
symmetric.

In this paper, 2 summary of results is given for loss of stiffness of a solid
containing various families of miccocracks. For simplicity, we restrict
attention to dilute dispersions of microcracks (so that the microcracks do not
interact) Further, we make the standard assumption that at least in a first
approximation, each grain of the polycrystailine aggregate is isotropic and
that residual stresses may be neglected. Next, we discuss some issues which
arise from the choice of the microcrack gucieation function. In the absence of
definitive experimental evideacs, a simple aucleation function is proposed
which leads to the microcsacked solid being hypereiastic This choice of
aucleation function is oot essential but leads easily to an assessment of the
extent of microcrack shieiding on 2 macroscopic crack tip. The resuits thus

obtained are compared with some resuits of Hutchinson [12], Charalambides
and McMeeking [13], and Oriz {16].

132 Microcracked solid with given crack deasity

The approach adopted hers closely follows that of Budiansky and O'Conneil
(1], Laws and Brockenbrough (10], and Hutchinson [12]. Cormsider an
isotropic solid with compliancs teasor M, which contains a family of variously
oriented open microcracks. It is esseatial to assume that the microcracks are
homogeneousiy dispersed. And it is convegient to assume that the microcacks
are of similar eiliptic planform and that crack orientation and size are not
correiated. A convenient measure of microcrack deasity has been suggested by
Budiansky and O'Conneil (1]:

2
g {fp-} 3.0

where N is the aumber of cracks per unit volume. A is the area of 2 crack and
P is perimeter. Also { } desotes the orieatation average of the bracketed
quaatity.

From (10], we can xmmedw.ely read off the formula for the loss of stiffness
of 2 solid containing a diluce distribution of similar micvocracks:
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3= 5o + 822 1A}, (132

where A is a tensor whose components are given in [10] for a vassty of
microcrack shapes, and where E(k) is the compiete elliptic integral of the
second kind.
It is of interest to give some explicit deductions from equation (13.0) for
i micocack disuibutions. For a2 three-dimensional randomly
oriented family of penny-shaped cracks, we can recover the Budiansky and
O"Conneil [1] resuits

E 16(1 = vD(10 = Ivg)
G 3201 = v (5 — vo) -z
&l T we-w w4

where G is the shear modulus and v is Poisson’s ratio. Also, for a amily of
aligned penny-shaped cracks

E 16

Eal——s-ﬂ(l—va (139)
G 16 L=v,

-G-;' T3, 1.6

where E is now Young's modulus aormal to the microcrack faces and G is the
transverse shear modulus.

When we have 2 family of aligned slit cracks, we find that the reduction in
Young's modulus normal to the slits is given by

F=1 -—ﬂ(l-‘%) 1.7
L ]

whereas for 2 two-dimensionally randomly oriented family of slits [10]

E .
E.:-l-'—ﬁ(l— va)- (13.9)

" Other explicit results are obtainable but details are aot given here.
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133 Microcrack aucleatioa

Some potentiai nucieation functions have been discussed by Brockesbrough-
and Suresh ((15], Hutchinsoa (127, Charalambides and McMecking [13] and
Oniz (16]. It is particularly appropriate here to consider the gucieation
function in {13] which is intimately associated with an isotropic distribution of
three-dimensional randomly orieated peany-shaped cracks According to
Charalambides and McMeeking (13], 2 good approximation to the Budian-
sky and O’Conneil [1] estimates for stiflness loss is given by

E v 16

. for all crack densities less than 9/16. The tensorial stress-strain relation

correspoanding to equations of (13.9) is givea by Hutchinson [12] in the form
"Mo"‘_[ (—-—ﬂ ] o (13.10)

Further, the associated aucieation function is proposed for proportional
loading to be

B=1p. (13.11)
where
p=(o-a (13.12)

Thus, under proportional loading, 8 is taken to increase monotonically until it
reaches a saturatioa value g, It thea foilows frow, equations (13.10), (13.11)
and (13.12) that a macroscapic energy deasity, U, exists, In face, for the didute
case .

U= %«- Mo + %‘é;@) (13.13)
where

F(p) = pflp), (13.19)
so that

= SERT)

de
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While it 3 true that equation (13.9) gives a good approximation to the
Budiaasky and O'Counneil (1] resuits over 2 large range of crack deasities, it is
equally true that the approximations enbodied in equation (13.9) are not
gecessarily good for small vaiues of 3 - as is evident fom equadons (13.3) and
(13.9). This observation has prompted ths investigation of a different’
aucieation function which clasely approximates the form in equatioa (13.11)
but which aiso leads to the existence of 2 macroscopic energy density function.

The nucieation function propased for investigation here is obtained by
demanding that the maczoscopic stress-strain relation in equatioa (13.2) be
derivable from a macroscopic energy deusity U(s). Indeed, it is not difficuit to
show that this requirement implies that the aucleation function under
proportional loading is

B=gldh (13.16)
where
& =a-{A} e (13.17)

Akotﬁgmpicmdmﬁtyishze

T = 3o Mo + 25260, (1318
where
G5} = eg(e). (13.19)

Clearly the aucieation function in equation (13.16) is intimately bound up with
the stress-strain refation in equation (13.2) and vice-versa. At this juncture we
mmnmmommm:pmposed&ncdonhequaﬁon(lllﬁ)zhibits
the same anisotropy as the stress-strain refation.

Wenm&no&zmxdmonfunmmwhmhdonotlndmzmmpm
energy density function have been considered by Hutchinson [12].

A particularly useful consequence of the existence of an energy function is
that we can casily determine the extent of shielding on 2 sationary
mmscopxcm&duetnmum:kmgmthepmmmﬁuumdﬂy
accomplished using the J integral. Following Hurchinson [12], we only
coasider Mode I small-scale microcracking. Repeating an argument of Evans
and Faber (3], Laws and Brockenbrough (11), and Hutchinson (12], weassert
that for 2 contour remote from a macroscopic crack in an isotropic solid

l-K*

Eq (1320

J =
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where X is the “applied™ stress intensity factor.
Oz the other hand, for contours in the saguration zons,
PRRU—L ) ~ (321
Invariance of J gives a formuia for X, for isotropic materiais.
Thus for 2 randomly oriented distribution of peany-shaped cracks we find
K, ‘88,
-l—m(10—3'°+8'§—3'a (1322
Far anisotropic distributions of microcracks, the algebraic details are more
tedious. Omitting details, we assert that for a distribution of aligned
peany.shaped cracks in the process zone

K 16 = Tv, . _.:

T =l-ao : (133
Also for aligned siit cracks

Ky | 1<

—f-l-mﬂ, (1329

whereas for two-dimensionzlly randomly oriented siit cracks

K, =
< =l-78 (1325)

nepnaﬁnzfomdiuemdnympandandmmadwﬁhmefomhc
obtained for different nucleation functions by Hutchinson [12], Charalam-
bides and McMeeking (13] and Ortiz (16].
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LOSS OF STIFFNESS DUE TO MICROCRACKING IN
UNIDIRECTIONAL CERAMIC MATRIX COMPOSITES
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Pittsburgh, Pennsylvania

ABSTRACT

In this paper we consider the probiem of a debond crack on the interface of a circular fiber
in an infinite matrix, when the matrix is loaded by uniaxial tension at infinity. We pay special
atention to those orientations of applied load for which the crack remains open. Finally we use the
analysis to calculate the loss of stiffness in an unidirectional ceramic matrix comiposite due to
interfacial mi king,

INTRODUCTION

. This paper is concerned with fiber-matrix interfacial debonds in a unidirectional fiber
reinforced composite. In the first place we discuss the problem of a single debond crack at the
interface between a circular fiber and an infinite matrix. The crack is assumed to be open with zero
tractions on the crack faces and the matrix is loaded by uniaxial tension at infinity. This problem
has already been discussed by England (1966), Periman and Sih (1967), Toya (1974) and Piva
(1982). We draw explicit artention to the fact that the crack closes for a significant range of
:;!znmdons of the ag%lil;dol?ad-as_ﬁmnowdbyT?ya t(hle974). Wealsod;::; lgfmion o ﬁt‘l:se fact

many stress intensi ‘or the homogeneous ignore thi
many sundard ty factors
More precisely, we present a slight modification of the England (1966) solution. Of
course, this solution involves overlapping of the crack faces near the tips. In view of recent work
by Rice (1988), He and Hutchinson (1989) and Suo and Hutchinson (1989) we endeavor to give a
interpretation of the solution of the stated problem. But we remark that the relationship
g:tween the present work and 2 properly formulated Comninou (1977) model, allowing for
interfacial contact, will be reported at a later date,
The paper concludes with the application of the resuits to the determination of the reduction
in ransverse stiffness of a dilute unidirectional ceramic matrix composite.
Finally we remark that extensions of the present work to multiple debond cracks
anisotropic fibers and matrix and large fiber concentrations are possible - but omitted here.

ANALYSIS

We consider the plane strain problem of an infinitt’ isotropic matrix with moduli x;,1,
which contains a circular fiber, of -adius a, with moduli x7,j12. The fiber is perfectly bonded to
the matrix except over the region r = 3, 8| S ¢. The system is loaded by uniaxial tension T at
infinity at angle @ to the x-axis. the faces of the crack are tractionfree.

A solution of the problem may be obtained in terms of the Muskhelishvil potentials
®(z) and y(z). Perhaps the simplest form is obtained if we work with the potentials ¢(z) and ¢(z)
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1) =28 '(i’-)+v(ﬁ) : (1)

La¢1»11-¢2-£dmme°;olummsmthel=w(m) » mmconunmtycondmom%lverd:g
interface imply the existence of two functions F(z), G(z) which are analytic except possibly at
mm&aﬂmtﬁem

F@) =0,@ -2 ., H>a, @

Fo) = 0, - %, . H<a , @
and

G‘”’%’l(’)"'ﬁ%h‘” . H>a, @

G(z) = % O;(z) +-Lxl(z) , H<a . o)

Mm.hﬁemm&mmmmmutkmﬁceism&uimpﬁum
F(z)=A+B/22 . ©)

With the help of the preceding definitions, the stated problem reduces to a standard Hilbert problem
forG(z).seeEngland(l%G).whoalso thesolunoumclosedfam.

In the present study, quantities interest are the asympiotic near-tip stresses and
cnckopemngd:splwemenn. Itis notdi to show that near the tip A (see Fig. 2.)

O +i0 F(°’m'%lnm¢(l+2iﬂ){m‘ .

m
. . 1 + X1z v ip
o ~A R F 0, 009 S ] ®
where
=HL P K12
Ty (+))
and
ﬂa.Lln a, (10)

and where F (9, @, B)xsaeomphcaxed.buxhwwn.funcnon Of course the above solution
implies overlapping of the crack faces, and thus gives an estimate of that part of the crack length
(rc) over which contact take place. this situation has been carefully and extensively discussed by
Rice (1988) in the case of an interface crack between two half spaces. Guided by the work of Rice
(1988) we introduce the parameter

fate .
220 ooan

Mamdmmumlewnmaamupmnmwhenf«l In such circumstances
Rice (1988) defines a classical stress intensity factor which is essentially obtained from (7) by

deleting the term (r/2a sin ¢)®. For similar problems He and Hutchinson (1989) and Suo and



Hutchinson (1989) have argued the desirability of setting f§ = 0 in equations (7) and (8) - at least in
the case of two haif spaces. In the sequel we investigate the consequences of both hypotheses.

We first examine the range of parameters for which the interfacial arc crack remains open.
Typical results are shown in Fig. 1. We first note the range of open cracks for various crack sizes
and load orientations in the homogeneous case. For a given crack size there is always a limitation
on the orientation of the applied load for the crack to remain open. In the inhomogeneous problem,
we find that taking B = O implies a larger range of open cracks than we obtain for small scale
contact. Further, the smaller the allowed scale of contact the smaller the range of open cracks.

We also present results for the classical stress intensity factors for a debond crack at the
interface of an SCS6 fiber in an LAS matrix in Figs. 2 and 3. We note that these curves apply only
when the cracks are open. And since the assumption of small scale contact leads o a smaller range
of open cracks than taking f = 0, the indicated curves in Figs. 2 and 3 have different ranges of
validity. However, in that range when both curves are valid, there is little between the S.LF. in
Figs. 2 and 3. An extensive discussion of this issue will be given elsewhere.

Next we use the preceding results to calculate the loss of transverse stiffness in a dilute
unidirectional SCS6/LAS composite due to interfacial debends. For simplicity we assume that the
same debond crack occurs at every fiber - this merely has the effect of reducing the number of
gxkeomemdmc;lvmmcm In addition we use the Budiansky and Q'Connell (1976) definition of

where N is the number of cracks per unit area and ! is the half length of the crack.

It must be hasized that the present discussion only applies o open cracks. In the first
instance we give in Fig. 4 the results for a homogeneous material - so that the overlapping problem
is absent. Similar results are presented in Figs. 5 and 6 for the composite material. Again the
difference between Figs. 5 and 6 merely lies in the range of validity of the curves for which the
cracks are open.
hellmﬂywemrk&nmexmﬁvedmsﬁmofﬂwimmnisedhadnwiubepmwd
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